795 research outputs found

    Mechanical properties of tungsten alloys with Y2O3 and titanium additions

    Get PDF
    In this research the mechanical behaviour of pure tungsten (W) and its alloys (2 wt.% Ti–0.47 wt.% Y2O3 and 4 wt.% Ti–0.5 wt.% Y2O3) is compared. These tungsten alloys, have been obtained by powder metallurgy. The yield strength, fracture toughness and elastic modulus have been studied in the temperature interval of 25 °C to 1000 °C. The results have shown that the addition of Ti substantially improves the bending strength and toughness of W, but it also dramatically increases the DBTT. On the other hand, the addition of 0.5% Y2O3, is enough to improve noticeably the oxidation behaviour at the higher temperatures. The grain size, fractography and microstructure are studied in these materials. Titanium is a good grain growth inhibitor and effective precursor of liquid phase in HIP. The simultaneous presence of Y2O3 and Ti permits to obtain materials with low pores presenc

    Study of turbocharger shaft motion by means of non-invasive optical techniques: Application to the behaviour analysis in turbocharger lubrication failures

    Full text link
    [EN] This paper presents a novel non-invasive technique to estimate the turbocharger shaft whirl motion. The aim of this article is to present a system for monitoring the shaft motion of a turbocharger, which will be used in turbocharger destructive testing. To achieve this, a camera and a light source were installed in a turbocharger test bench with a controlled lubrication circuit. An image recording methodology and a process algorithm have been developed, in order to estimate the shaft motion. This processing consists on differentiating specific zones of the image, in order to obtain their coordinates. Two reference points have been configured on the compressor side, which help to calculate the relative position of the shaft, avoiding the errors due to structural vibrations. Maximum eccentricity of the turbocharger has been determined and it has been compared with shaft motion when it is spinning in different conditions. A luminosity study has been also done, in order to improve the process and to obtain locus of shaft position in a picture exposition time period. The technique has been applied to diagnosis of a lubrication failure test and the main results will be presented in this article: like shaft motion figures; thermodynamic variables and pictures of the shaft while it is spinning at abnormal lubrication conditions. The measuring components used in this technique have the ability to withstand the catastrophic failure of the turbocharger in this type of test. © 2012 Elsevier Ltd.Pastor, JV.; Serrano, J.; Dolz, V.; López Hidalgo, M.; Bouffaud, F. (2012). Study of turbocharger shaft motion by means of non-invasive optical techniques: Application to the behaviour analysis in turbocharger lubrication failures. Mechanical Systems and Signal Processing. 32:292-305. doi:10.1016/j.ymssp.2012.04.020S2923053

    Increased circulating adiponectin levels and decreased leptin/soluble leptin receptor ratio throughout puberty in female ballet dancers:association with body composition and delay in puberty

    Get PDF
    Introduction: Ballet dancers (BDs) have a negative energy balance related to physical training that results in alterations in body composition, sexual development, and adipokine secretion. Our aims were to study anthropometric parameters, body composition, and their relationship with adipokines throughout pubertal development. Subjects and methods: We carried out a prospective follow-up study of 22 female Caucasian BDs (Tanner II stage) followed throughout puberty. Nutritional status was determined by measurement of height, weight, and body mass index (BMI). We calculated growth velocity, bone maturity, and body composition at Tanner stages II, III, and V by dual energy X-ray absorptiometry. Circulating leptin, adiponectin, and soluble leptin receptor (sObR) levels were determined. Results: BDs presented a delay in skeletal maturation during puberty, without affectation of final height. Energy intake was deficient according to their physical exercise, and they had a delay of 1 year in the mean age of menarche. Leptin levels were decreased, whereas sObR and adiponectin levels were increased throughout puberty. The percentage of trunk fat, total fat mass, and fat of the extremities was decreased throughout the study period (P<0.01). Lean mass was increased in the lower extremities, and bone mineral density was normal. Conclusion: A negative energy balance together with maintained physical exercise induced modifications in body composition in BDs. Changes in leptin and adiponectin levels appear to be more related to total fat content than to BMI. Furthermore, the onset and delayed progress of puberty may be related with an inadequate energy balance due to increased exercise

    Comportamiento mecánico de la aleación W+1%Y2O3 en función de la atmósfera y la temperatura

    Full text link
    Mediante ensayos de flexión en tres puntos se compara y evalúa el comportamiento mecánico de la aleación W- 1wt%Y2O3 con el W puro fabricados ambos mediante HIP. Se ha obtenido la tenacidad de fractura, la resistencia a flexión y el límite elástico en atmósfera oxidante y de vacío en un intervalo de temperaturas comprendido entre -196 ºC, ensayos de inmersión en nitrógeno líquido, y 1200 ºC. Previamente, se ha medido la densidad, la dureza mediante ensayos Vickers y el módulo de elasticidad dinámico de los materiales. Además, la dureza y el módulo de elasticidad se han comparado con los obtenidos mediante ensayos instrumentados de nanoindentación. Finalmente se ha realizado un pequeño estudio de las superficies de fractura de las muestras ensayadas mediante microscopía electrónica de barrido para poder relacionar el modo de rotura de los materiales y las propiedades mecánicas macroscópicas con los micromecanismos de fallo involucrados en función de la temperatura

    Kinematic and kinetic patterns related to free-walking in Parkinson's disease

    Get PDF
    The aim of this study is to compare the properties of free-walking at a natural pace between mild Parkinson’s disease (PD) patients during the ON-clinical status and two control groups. In-shoe pressure-sensitive insoles were used to quantify the temporal and force characteristics of a 5-min free-walking in 11 PD patients, in 16 young healthy controls, and in 12 age-matched healthy controls. Inferential statistics analyses were performed on the kinematic and kinetic parameters to compare groups’ performances, whereas feature selection analyses and automatic classification were used to identify the signature of parkinsonian gait and to assess the performance of group classification, respectively. Compared to healthy subjects, the PD patients’ gait pattern presented significant differences in kinematic parameters associated with bilateral coordination but not in kinetics. Specifically, patients showed an increased variability in double support time, greater gait asymmetry and phase deviation, and also poorer phase coordination. Feature selection analyses based on the ReliefF algorithm on the differential parameters in PD patients revealed an effect of the clinical status, especially true in double support time variability and gait asymmetry. Automatic classification of PD patients, young and senior subjects confirmed that kinematic predictors produced a slightly better classification performance than kinetic predictors. Overall, classification accuracy of groups with a linear discriminant model which included the whole set of features (i.e., demographics and parameters extracted from the sensors) was 64.1

    Mechanical characterisation of tungsten-1wt.% yttrium oxide as a function of temperature and atmosphere

    Full text link
    This study evaluates the mechanical behaviour of an Y2O3-dispersed tungsten (W) alloy and compares it to a pure W reference material. Both materials were processed via mechanical alloying (MA) and subsequent hot isostatic pressing (HIP). We performed non-standard three-point bending (TPB) tests in both an oxidising atmosphere and vacuum across a temperature range from 77 K, obtained via immersion in liquid nitrogen, to 1473 K to determine the mechanical strength, yield strength and fracture toughness. This research aims to evaluate how the mechanical behaviour of the alloy is affected by oxides formed within the material at high temperatures, primarily from 873 K, when the materials undergo a massive thermal degradation. The results indicate that the alloy is brittle to a high temperature (1473 K) under both atmospheres and that the mechanical properties degrade significantly above 873 K. We also used Vickers microhardness tests and the dynamic modulus by impulse excitation technique (IET) to determine the elastic modulus at room temperature. Moreover, we performed nanoindentation tests to determine the effect of size on the hardness and elastic modulus; however, no significant differences were found. Additionally, we calculated the relative density of the samples to assess the porosity of the alloy. Finally, we analysed the microstructure and fracture surfaces of the tested materials via field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In this way, the relationship between the macroscopic mechanical properties and micromechanisms of failure could be determined based on the temperature and oxides forme

    Wersync: A WEB-BASED PLATFORM FOR DISTRIBUTED MEDIA SYNCHRONIZATION AND SOCIAL INTERACTION

    Get PDF
    This paper presents Wersync, which is an adaptive and accurate web-based platform that enables distributed media synchronization and social interaction across remote users. By using Wersync, users can create or join on-going sessions for concurrently consuming the same media content with other remote users in a synchronized manner. Besides, social interaction is provided by sharing the navigation control commands and by integrating synchronized text chat channels. Additionally, two social presence mechanisms have been added to stimulate the participation of external users in on-going sessions on Wersync. By exclusively relying on standard web-based technologies, this platform can guarantee cross-network, cross-platform and crossdevice support, which is a key point in the current heterogeneous media delivery ecosystem

    Ultrafiltration of residual fermentation brines from the production of table olives at different operating conditions

    Full text link
    [EN] The membrane process of ultrafiltration (UF) has been investigated as a pretreatment previous to the further recovery and concentration of phenolic compounds from residual table olives fermentation brines. Two UF membranes were tested: a permanently hydrophilic polyethersulfone (PES) membrane with a molecular weight cut-off (MWCO) of 30 kDa and a PES membrane with a MWCO of 5 kDa. Transmembrane pressure and crossflow velocity were varied from 1 to 3 bar and from 2.2 to 3.7 m s(-1), respectively. The best membrane in terms of permeate flux and selectivity was that with MWCO of 5 kDa and the best operating conditions were transmembrane pressure of 3 bar and crossflow velocity of 2.2 m s(-1). In these conditions permeate flux was 21.6 L h(-1).m(-2), while the rejection of COD and phenolic compounds were 50.0% and 21.9%, respectively and the removal of colour and turbidity was almost complete. In addition, an alkaline cleaning protocol was proposed, which was effective to restore the initial permeability of the selected membrane. (C) 2018 Elsevier Ltd. All rights reserved.The authors of this work wish to gratefully acknowledge the financial support of CDTI (Centre for Industrial Technological Development) depending on the Spanish Ministry of Science and Innovation (INNPRONTA program, ITP-20111020).Carbonell Alcaina, C.; Alvarez Blanco, S.; Bes-Piá, M.; Mendoza Roca, JA.; Pastor Alcañiz, L. (2018). Ultrafiltration of residual fermentation brines from the production of table olives at different operating conditions. Journal of Cleaner Production. 189:662-672. https://doi.org/10.1016/j.jclepro.2018.04.127S66267218

    Human Cerebral Activation during Steady-State Visual-Evoked Responses

    Get PDF
    Flicker stimuli of variable frequency (2-90 Hz) elicit a steady-state visual-evoked response (SSVER) in the electroencephalogram (EEG) with the same frequency as the stimulus. In humans, the amplitude of this response peaks at approximately 15 Hz, decreasing at higher stimulation frequencies. It was not known whether this peak response corresponds to increased synaptic activity in the visual cortex or to other mechanisms [for instance, the temporal coherence (phase summation) of evoked responses]. We studied the SSVER in 16 normal volunteers by means of visual stimulation at 14 different frequencies (from 5 to 60 Hz) while recording the EEG. In nine subjects of the group, we measured regional cerebral blood flow (rCBF) with positron emission tomography (PET)-H2(15)O at rest and during visual stimulation at five different frequencies: 5, 10, 15, 25, and 40 Hz. We confirmed that the amplitude of the SSVER in occipital regions peaks at 15 Hz stimulation. Applying to the PET rCBF data a contrast weighted by the amplitude of the SSVER, we determined that the primary visual cortex rCBF follows an activation pattern similar to the SSVER. This finding suggests that the amplitude of the SSVER corresponds to increased synaptic activity, specifically in Brodmann's area 17. Additionally, this study showed that visual stimulation at 40 Hz causes selective activation of the macular region of the visual cortex, and that a region in the dorsal aspect of the Crus I lobule of the left cerebellar hemisphere is activated during repetitive visual stimulation
    • …
    corecore